Abnormal morphological and functional organization of the hippocampus in a p35 mutant model of cortical dysplasia associated with spontaneous seizures.
نویسندگان
چکیده
Cortical dysplasia is a major cause of intractable epilepsy in children. However, the precise mechanisms linking cortical malformations to epileptogenesis remain elusive. The neuronal-specific activator of cyclin-dependent kinase 5, p35, has been recognized as a key factor in proper neuronal migration in the neocortex. Deletion of p35 leads to severe neocortical lamination defects associated with sporadic lethality and seizures. Here we demonstrate that p35-deficient mice also exhibit dysplasia/ heterotopia of principal neurons in the hippocampal formation, as well as spontaneous behavioral and electrographic seizures. Morphological analyses using immunocytochemistry, electron microscopy, and intracellular labeling reveal a high degree of abnormality in dentate granule cells, including heterotopic localization of granule cells in the molecular layer and hilus, aberrant dendritic orientation, occurrence of basal dendrites, and abnormal axon origination sites. Dentate granule cells of p35-deficient mice also demonstrate aberrant mossy fiber sprouting. Field potential laminar analysis through the dentate molecular layer reflects the dispersion of granule cells and the structural reorganization of this region. Similar patterns of cortical disorganization have been linked to epileptogenesis in animal models of chronic seizures and in human temporal lobe epilepsy. The p35-deficient mouse may therefore offer an experimental system in which we can dissect out the key morphological features that are causally related to epileptogenesis.
منابع مشابه
Rapamycin suppresses seizures and neuronal hypertrophy in a mouse model of cortical dysplasia.
Malformations of the cerebral cortex known as cortical dysplasia account for the majority of cases of intractable childhood epilepsy. With the exception of the tuberous sclerosis complex, the molecular basis of most types of cortical dysplasia is completely unknown. Currently, there are no good animal models available that recapitulate key features of the disease, such as structural cortical ab...
متن کاملPhysiological and morphological characterization of dentate granule cells in the p35 knock-out mouse hippocampus: evidence for an epileptic circuit.
There is a high correlation between pediatric epilepsies and neuronal migration disorders. What remains unclear is whether there are intrinsic features of the individual dysplastic cells that give rise to heightened seizure susceptibility, or whether these dysplastic cells contribute to seizure activity by establishing abnormal circuits that alter the balance of inhibition and excitation. Mice ...
متن کاملThe protective effect of carvacrol on kainic acid-induced model of temporal lobe epilepsy in male rat
Background and Objective: Temporal lobe epilepsy (TLE) is a chronic neurological disorder with spontaneous recurrent seizures and abnormal intracranial waves. Since the role of oxidative stress in the occurrence of epilepsy is inevitable, it seems that the use of antioxidants can prevent some of the complications resulting from this disease. This study was designed to assess the protective effe...
متن کاملP119: Animal Models of Epilepsy: The Impact of some Chemoconvalsants on Animal Models
We summarize some of the most frequenthly used rodent animal models of temporal lobe epileps and the impact of chemoconvulsants on them. Temporal lobe epilepsy is the most common epilepsy in humans in which seizures spread to the neighboring cortiase and hippocampal neuron loss and other neuropathological take place. Temporal lobe epilepsy and the other form of epilepsy cannot acquired in chini...
متن کاملThe Effects of L-arginine on the Hippocampus of Male Rat Fetuses under Maternal Stress
Introduction: Prenatal stress has deleterious effects on the development of the brain and is associated with behavioral and psychosocial problems in childhood and adulthood. This study aimed to determine the protective effect of L-arginine on fetal brain under maternal stress. Methods: Twenty pregnant Wistar rats (weighting 200-230 g) were randomly divided into 4 groups (n=5 for each group). T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 3 شماره
صفحات -
تاریخ انتشار 2001